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Abstract—In graph signal processing (GSP), data dependencies
are represented by a graph whose nodes label the data and the edges
capture dependencies among nodes. The graph is represented by a
weighted adjacency matrixA that, in GSP, generalizes the Discrete
Signal Processing (DSP) shift operator z−1. The (right) eigenvec-
tors of the shift A (graph spectral components) diagonalize A and
lead to a graph Fourier basis F that provides a graph spectral
representation of the graph signal. The inverse of the (matrix of the)
graph Fourier basisF is the Graph Fourier transform (GFT),F−1.
Often, including in real world examples, this diagonalization is
numerically unstable. This paper develops an approach to compute
an accurate approximation to F and F−1, while insuring their
numerical stability, by means of solving a non convex optimization
problem. To address the non-convexity, we propose an algorithm,
the stable graph Fourier basis algorithm (SGFA) that improves
exponentially the accuracy of the approximating F per iteration.
Likewise, we can apply SGFA to AH and, hence, approximate the
stable left eigenvectors for the graph shift A and directly compute
the GFT. We evaluate empirically the quality of SGFA by applying
it to graph shifts A drawn from two real world problems, the 2004
US political blogs graph and the Manhattan road map, carrying
out a comprehensive study on tradeoffs between different SGFA
parameters. We also confirm our conclusions by applying SGFA
on very sparse and very dense directed Erdős-Rényi graphs.

Index Terms—Graph signal processing, graph Fourier basis,
graph Fourier transform, eigendecomposition, numerical stability,
Manhattan road map, political blogs.

I. INTRODUCTION

A TRUISM of current technology is the explosive growth of
data—Big Data, characterized variously by1 three, four,

five, or seven V’s. Of these, we focus on variety that may reflect
different data formats, arising from diverse data sources and
applications. Examples include tweets, networks of coauthors
and citations [1], hyperlinked blogs [2], phone users, customers
of service providers, friends in a social network, individuals in
populations, traffic flows in urban environments [3], [4], or phys-
ical measurements like temperature or humidity in a network
of meteorological stations spread over a whole country, among
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many other examples, e.g., [5], [6], of current interest. Data
from these applications contrast with traditional time series,
audio or speech signals, images, video, or point clouds where
the data samples are indexed by time instants, pixels, voxels,
or pixels and time taking values on a regular one-, two-, three-
or even four-dimensional grid. This variety of Big Data also
often leads to data being referred to as unstructured, not fitting
neatly on a table. This unstructured data is structured through a
graph G = (V, E) where nodes or vertices in the set V represent
the sources or labels of the data and (directed or undirected)
edges in the set E capture dependencies or relations among
the data of different nodes. For example, traffic counts in a
metropolitan area are directly dependent if corresponding to
close by locations of the same street. In this paper, the graph G
is general and characterized by an adjacency matrix A [7]. As
explained in Section II, in Graph Signal Processing (GSP) [8],
the adjacency matrix A plays the role of the shift z−1 in discrete
signal processing (DSP) [9]–[11]. We refer to A as the graph
shift. In GSP, the eigenvalues {λi} and (right) eigenvectors {fi},
1 ≤ i ≤ n, of A are the graph frequencies and graph spectral
components [8], [12], respectively, extending to signals defined
on a graph G the common concepts of frequency and harmonic
components for time signals. The matrix F of the eigenvectors
or graph spectral components of A will be referred to as the
graph Fourier basis. If A is diagonalizable, the inverse of F is
the graph Fourier transform2 (GFT), F−1 = WH . The matrix F
and its inverse F−1 = WH are unique up to choice of basis in
the graph signal space [14], [15]. In DSP, the GFT is the discrete
Fourier transform (DFT).

For generic directed graphs (digraphs), A is not symmetric,
the eigenvalues λi may be complex valued, its eigenvectors
or graph Fourier components fi are not orthogonal and the
graph Fourier basis F is not unitary (F−1 �= FH) or fail to
be a complete basis [8], [13], and the columns fi of F are
in general not of unit norm. Authors have taken different ap-
proaches to avoid these issues and preserve F to be unitary.
For example, 1) [16], [17] redefine the shift matrix to make it
a norm preserving operator; 2) [18], [19] consider the case of a
normal shift (AAH = AHA and A is unitarily diagonalizable,
but with eigenvalues not necessarily real valued); 3) more often,
the literature considers the graph to be undirected, so, the shift
is symmetric, or take the shift to be the graph Laplacian L [12],
either of which is diagonalizable by a unitary operator3; and 4)

2If A is not diagonalizable, see [13] on how to define the GFT.
3The Laplacian L is a second order operator like a second order derivative

or difference, while A is first order like first order derivative or difference.
Adopting L as shift is then equivalent to working with a time shift z−2 in
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[20] considers directed graphs but redefines the GFT to keep it
orthogonal and avoid Jordan decompositions. However, it may
be hard to develop a graph filtering theory for [20].

Our goal is to consider spectral analysis for data supported by
generic graphs—graphs not restricted by any special structure—
to address the difficulties associated with finding a numerically
stable graph Fourier transform and Fourier basis F . These prob-
lems may stem from 1) the lack of orthogonality between the
fi (eigenvectors of A and columns of F ), some of which may
be close to being parallel, 2) possible large scale differences
between the fi’s, and 3) for defective A, the set of eigenvectors
{fi} not being a complete basis and A not being diagonalizable.
We develop an optimization approach to approximately diago-
nalize the matrix A by a numerically stable, non unitary, Fourier
basis F . The algorithm provides a tunable tradeoff between
the accuracy of the diagonalization (measured for example by
the error4 ‖AF − FΛ‖F , where Λ is the diagonal matrix of
eigenvalues of A) and the stability of F (measured by the
minimum singular value σmin(F )).

In fact, attempting to diagonalize shift matrices (or adja-
cency matrices) of generic graphs by standard methods like
the routine eig in MATLAB leads often to highly numerically
unstable Fourier basis F , i.e., the matrix F has a very large
condition number5 κ and a very small minimum singular value
σmin(F ) � 10−12. Numerically unstable Fourier basis F is
highly undesirable since then the GFT, F−1, is badly scaled,
becoming difficult to carry out graph spectral analysis, graph
spectral decompositions, graph Fourier transforms, and related
concepts in GSP. To confirm that such matrices occur frequently,
we study the class of directed Erdős-Rényi random graphs
generated with probability of connection p ∈ [0 1]. For not
very large values of p, Erdős-Rényi random graphs are highly
sparse, a characteristic found in many real world graphs. For
completeness, we include numerical studies for two types of
Erdős-Rényi random graphs: a) models without self-loops, ob-
tained when the probability of connection between a node and
itself is zero, and 2) models with possible self-loops where a
node may connect with itself with probability p. We consider
100 values of p discretizing [0 1]. For each of these 100 values
of p, we generated 103 directed Erdős-Rényi graphs for both
models (without and with possible self-loops). We then used
MATLAB eig to find the Fourier basis F diagonalizing their
adjacency matrix A and computed for each such F the corre-
sponding σmin(F ). Fig. 1 plots the empirical probability that
σmin(F ) ≤ 10−12 for forty values of p tested in the ranges6

[0 .09] and [.93 1], corresponding to very low and very high
probability of connection p. The value of 10−12 upper bounding

traditional DSP or linear systems, or to restrict signals to have even symmetry like
autocorrelations and filters to be polynomials (or rational functions) in powers
of z−2. In contrast, working with A as shift corresponds in DSP to the time shift
z−1 and filters to be polynomials (or rational functions) in z−1.

4The subindex F stands for Frobenius norm, ‖A‖F =
√∑

i,j
A2

i,j
.

5Empirically, we observed that the maximum singular value σmax(F ) is not
very large. It is the σmin(F ) that is very small. We focus this discussion on
σmin(F ).

6Results for other values of p are not shown since the empirical probability
that σmin(F ) ≤ 10−12 is zero.

Fig. 1. Empirical probability that σmin(F ) ≤ 10−12 vs. probability of con-
nection p for two types of Erdős-Rényi models with n = 100 nodes: in red,
models without self-loops and, in blue, models with possible self-loops. Left
and right tails for 1000 Monte Carlo trials.

σmin(F ) reflects the very bad conditioning of the Fourier basisF
computed by MATLABeig. In both models, the extreme points
p = 0 and p = 1 yield a numerically stable Fourier basis F
with probability one since the generated (isolated nodes and
complete) graphs are trivially undirected. As can be seen, for
both with (blue plot) and without (red plot) self-loops and for
both very sparse and very dense random directed Erdős-Rényi
graph models, the Fourier bases F computed by MATLAB eig
tend to be numerically unstable with high probability. When
we allow for self-loops (red plot), we note for high values
of p that the (red) plot has a slightly smoother transition to the
extreme (completely connected) case p = 1. Beyond random
networks, this is also the case with real world networks, like we
observed in other work, when we analyzed [8] the political blogs
network [2] shown in Fig. 2(b) and when we studied [3], [4] the
Manhattan road map shown in Fig. 2(c). Using MATLAB eig
leads to F with σmin(F ) ≈ 10−33 for the political blogs and
σmin(F ) ≈ 10−19 for the Manhattan road map. We expand on
these in Sections V and VI, respectively.

Remark 1: As we mentioned, the paper gives a method to
find an approximate stable approximation to the Fourier basis F
when the eigenvector matrix is unstable either because 1) no full
rank F exists; or 2) full rank F may exist, but the computed F is
numerically unstable. A Fourier basis F may not exist because
the shift A is defective. This may occur when the graph shift has
a repeated eigenvalue λ with (numerically computed) algebraic
multiplicity greater than one.7 As studied in [13], this is the
case with the political blogs network and the Manhattan road
map, where, in both cases, as computed with MATLAB eig,
λ = 0 has algebraic multiplicity of several hundred (see below
in Fig. 12(a) a plot of the eigenvalues for the Manhattan road

7A matrix is diagonalizable iff for every eigenvalue the algebraic and geo-
metric multiplicities are equal.
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Fig. 2. Different graphs in the context of GSP. (a) A 2D rectangular lattice
indexing pixels in a digital image; (b) graph of political blogs; and (c) Manhattan
road map.

map). Numerically computing an eigenvalue with large algebraic
multiplicity is a well known difficult problem. It may give rise
to a cluster of values with the true eigenvalue possibly at its
center [21], [22] or the true eigenvalue may be best approxi-
mated by a pseudoeigenvalue [23], [24]. Rounding errors may
make it not possible to determine if an eigenvalue is actually
a repeated eigenvalue or a cluster of (not necessarily close
together) eigenvalues. In other words, determining true versus
spurious eigenvalues in the numerically computed spectrum of
the shift matrix may be ambiguous. Further, as observed by
[25], with repeated eigenvalues, the direct computation of the
eigendecomposition of the shift A is in general numerically
unstable (even more so, if it involves the Jordan decomposition
[13], [26] where a small perturbation of the input matrix may
drastically change the computed Jordan form). The paper will

not dwell further on this; we simply state that our algorithm can
be applied to compute a stable F and stable F−1 that accurately
approximate the diagonalization ofA in either the no full rankF
case 1) or the full rank F case 2) above. �

The examples above of random graphs and real world applica-
tions point to the difficulty encountered often of computing the
Fourier basis F and its inverse, the GFT, F−1. They confirm the
interest and the need to develop a numerically efficient method
to find an approximate stable Fourier basis F , our goal with this
work. This paper develops SGFA, the stable graph Fourier basis
algorithm, to compute an accurate stable approximation toF for
generic digraph shifts A (not necessarily symmetric). SGFA is a
two stage procedure that, iteratively, attempts 1) to diagonalize
a triangular decomposition of A, and 2) to optimize the numer-
ical stability of the resulting F . There are trade-offs between
accuracy (degree of diagonalizability of the decomposition as
measured by how close the numerically stable approximation
of F is to the true F ) and stability (well conditioning of the
resulting approximation of F ).

We can compute the GFT, F−1, by numerically inverting
the graph Fourier basis F obtained with SGFA. But this may
affect its numerical accuracy, since we first compute the (right)
eigenvectors and then invert the Fourier basis F . To avoid this,
we compute directly the GFT by applying SGFA to AH , since
the right eigenvectors of AH are the left eigenvectors8 of A. In
other words, diagonalizing AH with SGFA computes directly
a stable approximation to the GFT, F−1, without inverting
the SGFA computed F . Since we do not know the true F
and true GFT, F−1, applying SGFA to both A and AH pro-
vides the opportunity to study the quality of the numerically
computed graph Fourier basis F by comparing its numerically
computed inverse with the SGFA directly computed GFT, and,
vice-versa, comparing the directly computed graph Fourier basis
with the (numerically computed) inverse of the matrix of (left)
eigenvectors.

To analyze tradeoffs between accuracy and stability and to
confirm the quality of the diagonalization and of the approxi-
mations to F , we carry out a number of studies: 1) We evaluate
how close F · F−1 and F−1 · F are to the identity matrix I ,
where F−1 is the numerically computed inverse of F . If SGFA
computes accurately a stable F , then F−1 is accurately com-
puted, and F · F−1 and F−1 · F should be close to I . 2) We
test how close the columns of F are to eigenvectors of A by
comparing A · F to F · Λ, where Λ is the diagonal matrix of the
graph frequencies (eigenvalues of A). This is carried out both
in terms of how close the magnitudes of A · fi and λifi are,
where fi is the eigenvector ofA corresponding to the eigenvalue
λi, and in terms of how aligned A · fi and fi are (how small
the angle between the two vectors is). 3) We compare how close
the inverse of the SGFA computed graph Fourier basisF is to the
(Hermitian of the) matrix of directly computed left eigenvectors
of A and vice-versa. We carry out extensive empirical studies
with two real world graphs, the political blogs network [2] and

8Let A = F ΛF−1 = W−H ΛWH , then WH A = ΛWH , AH =
W Λ�W−1, and the columns of W are the left eigenvectors of A and W is
the Fourier basis of AH .
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the Manhattan Road Map [3], [4]. The random models of Fig. 1
are also considered in Section VII.

We summarize the remaining of the paper. In Section II, we
briefly review GSP concepts and present two interesting graphs
arising in applications. Section III introduces the problem of
computing numerically the graph Fourier basis F for generic
graphs A. Section IV introduces, motivates, and analyzes the
Stable Graph Fourier basis Approximation (SGFA) algorithm.
We prove that the accuracy of our approximation to F improves
(at least) exponentially, per iteration. In Sections V and VI,
we apply SGFA to compute the graph Fourier basis F and
the GFT for the 2004 US political blogs graph [2] and for the
Manhattan Road Map [3], [4] and carry out a comprehensive
empirical study to illustrate accuracy, stability, and tradeoffs
of the SGFA. The random models of Fig. 1 are studied in
Section VII. Section VIII displays examples of low, medium,
and high frequency of the graph spectral components of the
Manhattan road map as computed by SGFA presented in the
paper. Finally, Section IX concludes the paper.

II. GRAPH SIGNAL PROCESSING

Graph Signal Processing (GSP) [8], [12], [27], [28], see also
overview [29], considers the problem of analyzing and process-
ing signals indexed by the nodes of a graph G = (V, A). We will
follow [8], [27], [28] that applies to general graphs G, directed
or undirected, while [12] considers undirected graphs. The set
of nodes is V = {v0, . . . , vn−1} and the n× n graph weighted
adjacency matrix is A. Entry (i, j) of A represents a directed
edge between nodes vi and vj with weight Ai,j . The graph
signal s is a complex valued vector s = [s0 · · · sn−1]

T ∈ Cn such
that the ith-component si of s corresponds to the element of s
indexed by node i in graph G, i.e., s maps nodes in graph G
to complex numbers in C. The application at hand dictates the
structure of G, as highlighted in the three graphs of Fig. 2. In
Fig. 2(a), G represents the graph associated with an image where
each node corresponds to a pixel, and, for a common image
model, each pixel value (pixel color or intensity) is related to the
values of its four adjacent pixels. This relation for the graph in
Fig. 2(a) is symmetric, hence all edges are undirected and have
the same weight, with possible exceptions of boundary nodes
that may have directed edges and/or different edge weights,
depending on boundary conditions [15]. Fig. 2(b) [2] represents
a directed network, where each node corresponds to a political
blog and the edges represent hyperlinks between blogs. The
colors of the nodes in Fig. 2(b) are the graph signal and represent
the political orientation of the blog (red for conservative, blue
for liberal). Orange edges go from liberal to conservative, and
purple ones from conservative to liberal; blue and red edges
hyperlink blogs of the same color. The size of each blog reflects
the number of other blogs that link to it, as according to [2].
Fig. 2(c) models the Manhattan Road Map where each node
(in black) corresponds to a two dimensional coordinate location
(latitude, longitude) [4] and the directed edges (in blue) represent
one- or two-way streets between locations, as verified by Google
Maps [3]. In GSP [8], [27], [28], the adjacency matrixAplays the
role of the shift operator z−1 in DSP. Its eigendecomposition is

A = FΛF−1, (1)

assuming A is not defective. We let

F = [f0 · · · fn−1] (2)

Λ = diag [λ0, . . . , λn−1] (3)

F−1 = WH =

⎡⎢⎣ wH
0
...

wH
n−1

⎤⎥⎦ . (4)

From (1), (2), and (3), we obtain

AF = FΛ

Afi = λifi, i = 0, . . . , n− 1.

Likewise, from (3), (1), and (4), we get

F−1A = ΛF−1
(
or WHA = ΛWH

)
wH

j A = λjw
H
j , j = 0, . . . , n− 1.

MatrixΛ is the diagonal matrix of the eigenvalues λ0, · · · , λn−1

of A, F is the matrix of (right) eigenvectors f0, . . . , fn−1

of A, and F−1 = WH is the matrix of (left) eigenvectors9

w0, . . . , wn−1 of A.
The eigenvectors f0, . . . , fn−1 (columns of F ) are the graph

frequencies or graph spectral components (corresponding to the
harmonic components of time signals), and we will refer to
them as the Fourier basis, and the eigenvalues λ0, · · · , λn−1 are
the graph frequencies.10 The matrix F−1 = WH is the graph
Fourier transform (GFT).

For a graph signal s, its graph Fourier transform ŝ is

ŝ = F−1 · s = WH · s
=
[
wH

0 s · · ·wH
n−1s

]T
= [〈w0, s〉 · · · 〈wn−1, s〉]T , (5)

where 〈wj , s〉 is the complex inner product of the left eigenvec-
tors wj and s. Equation (5) analyzes the graph signal s in terms
of its graph Fourier coefficients ŝ0, · · · , ŝn−1, the entries of ŝ.

Similarly, the graph signal s is obtained from its graph Fourier
transform ŝ through the inverse GFT, F ,

s = F · ŝ (6)

= ŝ0f0 + · · ·+ ŝn−1fn−1. (7)

Equation (6) shows that ŝ is the representation of the graph
signal s on the graph Fourier basis F , while (7) synthesizes
the graph signal s as a linear combination of the graph Fourier
components f0, . . . , fn−1, with the coefficients of this linear
combination being the graph spectral coefficients ŝj of s.

If we take the Hermitian of both sides of Equation (1), we
obtain the eigendecomposition of the Hermitian of A

AH = F−HΛ�FH

= WΛ�FH , (8)

9By convention, the left eigenvectors of A are the columns of the matrix W
and not the rows of WH .

10With time signals, say continuous time, it is common to call frequencies f =
1

j2π lnλ = 1
j2π ln ej2πf . Here, the graph frequencies are the eigenvalues λ

themselves.
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where Λ∗ is the conjugate of the matrix Λ of the eigenvalues
of A. From (8), it follows

AHW = WΛ�.

This shows that the right eigenvectors of AH are the (left)
eigenvectors ofA (written as column vectors). IfA is real valued
(which we will assume in the sequel, unless otherwise stated),
AH = AT .

Graph signal processing has experienced significant research
activity in the last few years, a very incomplete list of references
or topics include on sampling [18], [30]–[34], on extending
concepts of randomness and stationarity [19], [35], [36], on
recovering the underlying graphs from data [37]–[41], on ex-
tensions to multirate graph signal processing and wavelets [42],
[43], on denoising [44], [45] and other signal reconstruction
problems [46], as well as many others. Not much work however
has been pursued on computing the graph Fourier transform and
related topics for actual real world networks, the focus of this
paper.

III. PROBLEM FORMULATION

The paper considers an algorithm to compute an accurate and
stable diagonalization (1) of A. This is important when either
the matrix F of eigenvectors is theoretically not full rank (A
is defective), see footnote 7, or it is numerically unstable (very
small minimum singular value). Although the diagonal structure
of (1) might not be achieved, it can be approximated to arbitrary
precision as stated next.

Theorem 1 ([47], Theorem 2.4.7.2): Any n-dimensional
square matrix A is similar to an upper triangular matrix

∀A, ∃ F (ε), T (ε) : A = F (ε)T (ε)F (ε)−1,

where ε > 0 denotes arbitrary precision, the eigenvalues of A
are on the main diagonal of T (ε), and T (ε) is upper triangular

Ti,i(ε) = λi(A), |Ti,j(ε)| ≤ ε for j > i. (9)

By (9), the triangular matrix T (ε) has infinitesimal small
energy on the upper diagonal entries.

The proof of Theorem 1 is constructive—[47] provides closed
form expressions for both F (ε) and T (ε) through the complex
Schur decomposition of A. Although their matrix F (ε) is prov-
ably invertible, a simple argument shows that the minimum
singular value σmin of F (ε) is upper bounded by εn−1; so, in
practice, it will not be numerically stable for a sufficiently low
ε or large enough n. In words, they trade the diagonalization
degree of T with the numerical stability of F . To prove this,
we import their construction of T (ε) and F (ε) for an ε < 1.
It suffices to analyse σmin(F (ε)). Without loss of generality,
we need only consider the particular instance ε < 1, since, for
any scalar φ ≥ ε, we get that if |Ti,j | ≤ ε then |Ti,j | ≤ ε ≤ φ.
Matrices T (ε) and F (ε) are [47]

(U, T ) : UUH = I, AU = TU, Ti,j = 0 for j < i (10)

t := max
j>i

|Ti,j |

Dθ :=

⎡⎢⎢⎢⎢⎣
1

θ
. . .

θn−1

⎤⎥⎥⎥⎥⎦

(F, T )(ε)=

⎧⎪⎪⎨⎪⎪⎩
(
UDε, D−1

ε TDε

)
if t ≤ 1

(
UD1/tDε, D−1

ε D−1
1/tTD1/tDε

)
if t > 1,

(11)

where U is the orthogonal matrix of Schur vectors for A. As
stated in Theorem 1, the matrix Λ of eigenvalues of A is the
matrix of diagonal entries of the triangular matrix T (ε).

Let t > 1 in (10); the alternative is similarly addressed.

σ2
min (F (ε)) = σ2

min

(
UD1/tDε

)
= min

‖x‖=1

∥∥UD1/tDεx
∥∥2
2

≤ ‖U‖22 min
‖x‖=1

∥∥D1/tDεx
∥∥2
2

≤ ∥∥D1/t

∥∥2
2
min
‖x‖=1

‖Dεx‖2

≤ σ2
min (Dε)

= ε2(n−1). (12)

The last equation shows as desired that σmin(F (ε)) ≤ ε(n−1).
Inspired by this result, we propose to approximate the diagonal
structure of A in (1), while maintaining the numerical stability
of the Fourier Basis as measured by the minimum singular value
σmin(F ), by solving the following problem

minimize
F,T∈Cn×n

‖AF − FΛ‖F

subject to AF = FT, σmin(F ) ≥ α,

Ti,j = 0 i > j, Ti,i = λi,

(13)

where ‖.‖F denotes the Frobenius norm, α ≤ 1 is an arbitrary
strictly positive constant, and Λ is obtained from the diagonal
entries of T , see (9). To impose the diagonal structure of (1),
we can choose other measures of accuracy like

√∑
j>i |Ti,j |2=

‖T−Λ‖F instead of ‖F (T − Λ)‖F . The algorithm of Section IV
is invariant to both formulations, and we can show that the same
type of theoretical reasoning applies (Result 1 and Theorem 2).

For generic stability margin α, problem (13) is challenging
since 1) we have a bilinear interaction between matrices (F, T );
and 2) σmin is a non concave function.

Remark 2: Even though by Theorem 1 any matrix is arbitrar-
ily close to being similar to a diagonal matrix, the solution of the
problem (13) is not simply to rescale the triangular T in Theo-
rem 1 till σmin(F ) ≥ α. In fact, the objective in problem (13)
is not invariant to scaling. If we scale F , we obtain a feasible
solution, but the objective function will become worst. In fact,
assume we find a pair (F, T ) such that σmin(F ) > 0 and all
constraints of problem (13) hold, but σmin(F ) � α. In this case,
if, to solve problem (13), we simply scaled F by γ/σmin(F ),
even if γF/σmin(F ) is still feasible for any γ ≥ α, the objective
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value is also scaled by γ/σmin(F ) > 1 and so it gets worse. In
summary, the solution is not simply to find an F that satisfies
all constraints except σmin(F ) ≥ α and then rescale this F .

IV. STABLE ACCURATE APPROXIMATION TO THE GFT

In this section, we present a local solution to problem (13),
the stable graph Fourier algorithm (SGFA).

A. Stable Graph Fourier Algorithm (SGFA)

Although non-convex, problem (13) can be globally solved
for a small α, as we describe in the next result.

Result 1: For any ε > 0, if α > 0 is sufficiently small, then
problem (13) can be optimally solved up to ε, by using in (11)

T

(
ε

‖F‖F
√

0.5n(n− 1)

)
and F

(
ε

‖F‖F
√

0.5n(n− 1)

)
.

Proof: Result 1 follows since the objective in problem (13)
is upper bounded by the off diagonal energy of matrix T . To be
concrete, we show that the objective in problem (13) is upper
bounded by ε. To see this, take T (φ) and F (φ) from (11), and
for φ = ε

‖F ‖F
√

0.5n(n−1)
, we get successively

‖AF − FΛ‖F = ‖F (T − Λ)‖F
≤ ‖F‖F ‖T − Λ‖F
≤ ‖F‖F

√
0.5n(n− 1)φ2

= ε.

The third inequality follows from the second because the
.5n(n− 1) upper elements of the triangular matrix T are
bounded by φ and from the assumed expression for φ. The
proof would be done if ε was a free variable. Note however
that, by (12), there exists a lower bound on ε namely ε ≥
α1/(n−1)||F ||F

√
0.5n(n− 1). Since α is assumed arbitrarily

small, the bound α1/(n−1)||F ||F
√

0.5n(n− 1) can be made
arbitrarily small and the optimality result follows. �

Our heuristic for problem (13) is based on Result 1: if we find
a point (F, T ) such that the off diagonal energy ofT is arbitrarily
small and matrixF is numerically stable, then (F, T ) is (close to
being) globally optimal for problem (13). We then propose the
next simple iterative scheme. Start with a feasible initial point
(F0, T0) and proceed by updating both variables as follows:
1) contract the upper diagonal energy of T ; and 2) compute
a Fourier Basis F , compliant with T , that has maximal σmin.
Contraction is obtained by simply multiplying the off diagonals
elements of Tk by a factor β < 1.

Maximizing the minimum singular value of an arbitrary ma-
trix is challenging, since its σmin is a non-concave function.
Instead, we consider the following general concave bound [47]

∀ (Fk, Fk+1):σmin (Fk+1)≥ σmin(Fk)−‖Fk+1 − Fk‖F , (14)

where Fk is the (constant matrix of) Fourier Basis from itera-
tion k. Hence, the Fourier Basis Fk is updated as follows

Fk+1 ∈ argmax
F

σmin (Fk)− ‖Fk − F‖F

subject to AF = FTk+1,

which is equivalent to

Fk+1 ∈ argmin
F

‖Fk − F‖F
subject to AF = FTk+1.

(15)

Remark that problem (15) is always feasible and, hence, the
iterative scheme is well posed for any iteration number k.
Regardless of matrix A, one possible starting point (F0, T0)
comes from the complex Schur decomposition of A:

A = F0T0F
H
0 , FH

0 F0 = In, {T0}ij = 0 i > j. (16)

The pair (F0, T0) is feasible for problem (13), since σmin(F0) =
1 ≥ α and the diagonal elements ofT0 correspond to eigenvalues
of A. SGFA is in Algorithm 1 where the numerical tolerance α
defines the stopping criteria.

Algorithm 1: Stable Graph Fourier Algorithm-SGFA.
1: Input Parameters: contraction factor 0 < β < 1 and

stability tolerance 0 < α ≤ 1.
2: Compute the complex triangular decomposition of

matrix A, i.e., compute F0, T0 such that (16) holds.
3: Update Tk by contracting the upper diagonal elements:

{Tk+1}i,j =
{
β {Tk}i,j , for j > i

{Tk}i,j otherwise
.

4: Update Fk by solving optimization problem:

Fk+1 ∈ arg min
F∈Cn×n

‖F − Fk‖F
subject to AF = FTk+1,

(17)

through an iterative solver.
5: Update (Tk, Fk) until σmin(Fk) < α.

The next theorem proves that SGFA exponentially decreases
the objective of problem (13), by exploring the orthogonal
projection nature of the update Fk+1.

Theorem 2: If SGFA runs for N iterations, the objective of
problem (13) decays, at least, exponentially fast in N ,

‖AFN − FNΛ‖F ≤ βN ‖T0 − Λ‖F ‖F0‖F . (18)

Proof: Bound (18) follows from ‖Fk+1‖F ≤ ‖Fk‖F . To
show this, note that Fk+1 corresponds to the orthogonal pro-
jection of Fk on the linear subspace Φk+1 defined by

Φk+1 := {F : AF = FTk+1} .
Hence, Fk can be uniquely decomposed as

Fk = Fk+1 +Wk+1

where Fk+1 ∈ Φk+1 and Wk+1 belongs to the orthogonal com-
plement of Φk+1, i.e., Wk+1 ∈ Φ⊥

k+1. By the orthogonality
between Wk+1 and Fk+1, we can conclude that

0 ≤ ‖Fk+1 − Fk‖2F
= ‖Fk+1‖2F + ‖Fk‖2F − trace

(
FH
k+1Fk

)− trace
(
FH
k Fk+1

)
= ‖Fk+1‖2F + ‖Fk‖2F − 2 trace

(
FH
k+1Fk+1

)
= ‖Fk‖2F − ‖Fk+1‖2F . (19)
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The first equality follows by expanding the right-hand-side of
the first inequality and recalling that the inner product of two
matrices is given by the trace, and the third equality follows by
recognizing that by orthogonality trace(FH

k+1Wk+1) = 0. We
now show that the exponential bound (18) is a consequence
of (19). By step 4 of the SGFA, Algorithm 1, AFk = FkTk.
Then

‖AFk − FkΛ‖F = ‖Fk (Tk − Λ)‖F
≤ ‖Tk − Λ‖F ‖Fk‖F
= βk ‖T0 − Λ‖F ‖Fk‖F
≤ βk ‖T0 − Λ‖F ‖F0‖F . (20)

The last inequality follows from step 3 of the SGFA, algorithm 1,
and (20). �

Example 1 (Algorithm 1: Tradeoffs): We illustrate with an
analytical example the tradeoffs between the algorithm parame-
ters β and α, and the error ‖AFk − FkΛ‖F as a function of the
iteration number k. Consider the nilpotent graph shift

A =

⎡⎢⎢⎢⎢⎣
0 1

0
. . .
. . . 1

0

⎤⎥⎥⎥⎥⎦ ∈ Rn×n

that has eigenvalue zero with algebraic multiplicity n and geo-
metric multiplicity 1. This graph shift is a n× n Jordan block
associated with λ = 0 and, so, it is not diagonalizable. We apply
algorithm 1 and derive a closed form expression for the approx-
imate Fourier basis Fk of A. Since A is upper triangular, the
initialization step of algorithm 1 is AF0 = T0 F0 with T0 = A,
F0 = In. The iterates {Tk, Fk}+∞

k=1 are

Tk =

⎡⎢⎢⎢⎢⎣
0 βk

0
. . .
. . . βk

0

⎤⎥⎥⎥⎥⎦
Fk = argmin

F
{ ‖F − Fk−1‖F , AF = F Tk} (21)

= γk diag
[
1, βk, . . . , βk(n−1)

]
(22)

γk : =

k∏
i=1

1 + β2i−1 + · · ·+ β2i (n−1)−(n−1)

1 + β2i + · · ·+ β2i (n−1)
(23)

Result (22) follows from the structure of A and the quadratic
nature of (21),

minimize
F

‖F − Fk−1‖F
subject to AF = F Tk

⇔

minimize
F

n∑
i,j=1

(Fi,j − {Fk−1}i,j)2

subject to {Fi,j}i,j=2,...,n = βk {Fi,j}i,j=1,...,n−1

(24)

Since F0 is diagonal, it follows that Fk will remain diag-
onal because in problem (24) the objective is minimized by
selecting Fi,j = 0 for i �= j (which is feasible). Given that
Fi,i = βk (i−1) F1,1 for i = 2, . . . , n, the convex objective (24)
only needs to be optimized with respect to the scalar variable
F1,1. The optimal F1,1 given by

F1,1 =
{Fk−1}1,1+βk{Fk−1}2,2 + · · ·+ βk(n−1){Fk−1}n,n

1 + β2k + · · ·+ β2k(n−1)
.

(25)

Expression (22) follows by settingF = Fk in (25) and unrolling
the resulting recursion. The factor γk in (23) will converge to an
� ≥ 1 since β < 1. To show this, first note that

γk ≤
k∏

i=1

{1 + β2i−1 + · · ·+ β2i (n−1)−(n−1)} := γ̂k

since the denominator of (23) is upper bounded by one. To show
that γk converges, we show instead that γ̂k converges. Note

log{γ̂k} =

k∑
i=1

log{1 + hi}

with hi := β2i−1 + · · ·+ β2i (n−1)−(n−1). Let us compare the
two series

∑k
i=1 log{1 + hi} and

∑k
i=1 hi by the limit compar-

ison test,

lim
i→+∞

log{1 + hi}
hi

= 1,

since hi → 0. Hence log{γ̂k} converges if and only if
∑k

i=1 hi

converges. This last series trivially converges since we are
summing n− 1 geometric series with ratio lower than unit. So
log{γ̂k} converges and γk converges to a limit �. The limit � is
greater than or equal to one, since the k terms being multiplied
in (23) are greater than or equal to one. Using (22), one can
directly relate the approximation error ‖AFk − FkΛ‖F and the
minimum singular value σmin(Fk),

‖AFk − FkΛ‖2F = γ2
k{β2k + · · ·+ β2k(n−1)} (26)

σ2
min (Fk) = γ2

k β
2k(n−1). (27)

Equations (26) and (27) show for this simple example im-
portant facts: 1) they give explicit expressions for both ac-
curacy ‖AFk − FkΛ‖F and stability σ2

min(Fk); 2) they show
that the singular value σmin(Fk) also decays exponentially fast
with parameter β, but at much faster rate than the approxi-
mation error ‖AFk − FkΛ‖F (βk(n−1) vs βk); they show that
σmax(Fk) = 1, i.e., the condition number σmax(Fk)/σmin(Fk)
behaves as 1/σmin(Fk). The last two comments will be veri-
fied empirically for much broader examples. 3) Because γk →
� ≥ 1, limk→∞ σmin(Fk) = limk→∞ βk(n−1) γk = 0, showing
that Fk asymptotically becomes rank deficient. they impose
a fundamental limit on the quality of our approximation,
i.e., for any fixed stopping criteria α the approximation error
‖AFk − FkΛ‖F cannot be made arbitrarily small. Indeed, for
‖AFk − FkΛ‖F to be arbitrarily small one would need to a)
take infinitely many iterations k, or b) choose an infinitesimal
small contraction factor β. In either case, the minimum singular
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value σmin(Fk) would also decay to zero, and we would get
σmin(Fk) < α after a) sufficiently many iterations k, or b) in the
first iteration k = 1 when β is sufficiently small. So, this simple
example shows that SGFA comes with a trade-off: in general, it
is impossible to find a Fourier basis that is both arbitrarily stable
and arbitrarily accurate. One must trade the two metrics to get an
appropriate approximation that meets a stability criteria defined
by α. �

Sections V–VII will confirm empirically the observation in
example 1 that there exists a tradeoff between contraction fac-
tor β and the minimum singular value σmin(Fk). The sections
verify empirically that, when β is small, a large contraction is
performed in Tk and σmin(Fk) tends to decrease rapidly. This
decay in σmin(Fk) is approximately exponential for low values
of β, replicating the behavior observed in the previous example.

B. Updating the Fourier Basis

To update the Fourier Basis Fk and solve problem (17), we
consider the (iterative) LSQR solver implemented in MATLAB
[48]. The method is based on the Golub-Kahan bidiagonalization
process. It is algebraically equivalent to the standard method of
conjugate gradient, but it has better numerical properties.

To use LSQR, we first reformulate problem (17) and step 4
of algorithm 1 as follows,

minimize
f∈Cn2

‖f‖2

subject to Af = b,

(28)

where

A = In ⊗A− TT
k+1 ⊗ In, b = vec (FkTk+1 −AFk) .

The symbol ⊗ denotes the Kronecker product. Formulation (28)
simply interprets matrix F as a vector f = vec(F ) in Cn2

,
rewrites the underlying matrix equality in vector form and
shifts the solution by vec(Fk) to get the desired format for the
MATLAB solver [48].

LSQR has no need to store in memory matrix A ∈ Cn2×n2
,

by defining a proxy to efficiently compute Af and AHf . In our
context, this is possible since

Af = vec (AF − FTk+1)

AHf = vec
(
ATF − FTH

k+1

)
. (29)

We now consider the computational effort of SGFA and
algorithm 3. We start by estimating this effort for step 4 of
algorithm 1 using solver LSQR and as refomulated by (28)
and (29). To compute Af and AHf , we just store, multiply, and
sum n× n matrices. To solve (28), by [48], LSQR will perform
10n2 multiplications plus computingAf andAHf per iteration.
By (29), computing Af and AHf involves computing AF and
FTk+1 (or ATF and FTH

k+1). We recall that in practice A is
highly sparse, F is dense, and Tk+1 will vary from an upper
triangular to essentially a diagonal matrix (whose diagonal
entries are fixed being equal to the eigenvalues of A). So,
computing FTk+1 and FTH

k+1 will require from O(n3) (when
Tk+1 is triangular) to O(n2) (when Tk+1 is diagonal). We now
consider the computational effort of calculating AF and ATF .

Fig. 3. Running time of a single iteration of LSQR for (28): mean (dots) and
minimum/maximum (dotted lines) times for 10 random initializations. Matrix
Tk+1 is upper triangular for the red plot and diagonal for the blue plot.

In practice, graphs are highly sparse with node average degree11

d � n. Assuming that the average number of nonzero entries of
each row of A is d ≈ lnn � n, then the product A f (or AH f)
has computational complexity O(dn2) ∼ O(n2 lnn), since ma-
trix F is typically dense. Therefore, the overall computational
cost of one iteration of LSQR varies from O(n3) to O(n2 lnn).

To have a better estimate of the computational requirements of
LSQR, we plot in Fig. 3 the running time of a single iteration of
LSQR (single iteration of step 4 of algorithm 1) when graph
shift A is a directed Erdős-Rényi graph with probability of
connection12 p = 1

n , and matrices (Fk) are complex matrices
with real and complex parts sampled from an i.i.d. standard
Gaussian distribution and matrices (Tk) are either triangular
i.i.d. standard Gaussian (red or top curve of Fig. 3) or diagonal
(blue or bottom curve of Fig. 3). We plot these two curves
since, as explained previously, matrix Tk+1 will vary from an
upper triangular to an essentially diagonal matrix as the iteration
number k increases. Hence, the curves of Fig. 3 represent bounds
on the expected computational time of a single iteration of LSQR
(single iteration of step 4 of algorithm 1): at the beginning (initial
iterations) the red (top) curve tracks the time it takes for an LSQR
iteration, while for later iterations, as LSQR becomes faster, it
is the blue (bottom) curve that tracks this time.

We now consider the time it takes one iteration of SGFA—
step 3 (contracting Tk+1), multiple iterations of step 4 (LSQR),
say K, and step 5 of algorithm 1. We empirically verified that
the complexity of an iteration of SGFA is essentially dominated
by the LSQR steps. Then, the overall computational complex-
ity of a single iteration of SGFA,13 algorithm 1, varies from

11For example, for undirected Erdős-Rényi graphs with probability of con-
nection p, the average degree is pn. With sharp threshold of connectedness lnn

n ,
the average degree of a sparse connected Erdős-Rényi graph is of the order lnn.
Recent work [50] shows that lnn

n is also a threshold for directed Erdős-Rényi
graphs, now with probability p of being strongly connected.

12By using MATLAB eig function, we always verify that σmin(F ) <
10−12, where F denotes the eigenvector matrix of the graph shift A.

13In algorithm 1 the complexity of contracting upper triangular matrix Tk by
β – step 3 – is not considered since it is dominated by the other updates – steps
4 and 5.
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O(Kn2 lnn+ n3) to O((K + 1)n3). The extra n3 term comes
from the computation of the stopping criterion of SGFA, step 5
of algorithm 1, that requires computation of the singular value
of Fk and will be ignored in the sequel.14

We use Fig. 3 to estimate the running time of SGFA. For
example, for a graph with n = 1500 nodes, Fig. 3 shows that a
single iteration of LSQR takes from .0055 min to .14 min, while
for a much larger graph, n = 10 000, it takes from .27 min to
41.56 min. If we assume that we run K = 100 iterations of
LSQR (inner loop) to solve optimization (17), we conclude that
one iteration of SGFA (with K = 100 iterations of LSQR) takes
for the graph with n = 1500 nodes on average from 5 min to
14 min, while for the larger graph with n = 10 000 nodes it
takes from 27 min to roughly 70 h. All numerical experiments
were carried out on a personal computer with processor Intel
Core i7-2600, CPU 3.4 GHz, and 16 GB of RAM.15

V. POLITICAL BLOGS

We now study empirically the SGFA, Algorithm 1, by ap-
plying it to the shift matrix for the graph of the political blogs
network.

A. Dataset

We consider the network of Fig. 2(b)—(a) graph of hy-
perlinks between n = 1490 weblogs, over the period of two
months preceding the U.S. Presidential Election of 2004 [2].
The underlying adjacency matrix A is directed and weighted: if
node vi has k URL references to node vj then Ai,j = k. The
maximum number of URL references between two nodes is
two. Matrix A is made publicly available by Mark Newman,16

together with some additional general information: σmin(A) =
0 (default precision), there are 19025 non zero entries, and
rank(A) = 784 < 1490; in this case λ = 0 is a repeated eigen-
value. By computing F with MATLAB eig, we find that
σmin(F ) ≈ 1.1× 10−33. We now apply SGFA, algorithm 1, to
find an approximation to the diagonalization of A.

B. Approximating a Stable Graph Fourier Transform

In this section, we evaluate the performance of SGFA, algo-
rithm 1, for different values of the threshold α for σmin(Fk)
and contracting factor β, namely, values of (α, β) on a two
dimensional 6× 14 grid. As explained in Section III, the objec-
tive is to get an accurate approximation of the Fourier Basis F
(inverse GFT), while maintaining the numerical stability of F .
We discuss accuracy and stability.

1) Accuracy: Fig. 4 plots the objective of problem (13),
‖AF − FΛ‖F , for the range of values of (α, β) indicated on

14Singular values are usually computed by LAPACK [50] that 1) reduces the
square matrix A to a bi-diagonal form B, and 2) finds the singular values of
B, which are equal to those of A. Step 1 uses Householder reductions with
complexity O(n3), while several alternatives exist for 2 with cost O(n2). We
ignore this time in the discussion.

15Such large graphs will be handled by more powerful computational re-
sources. Also, the number of iterations of LSQR can be adjusted to improve the
scalability of algorithm 1.

16Visited March 2019. [Online]. Available: https://www.cise.ufl.edu/
research/sparse/matrices/Newman/polblogs

Fig. 4. Political blogs network: Accuracy of SGFA, algorithm 1, 2-D map as
a function of algorithm parameters (α, β).

Fig. 5. Political blogs network: Log scale accuracy of SGFA, algorithm 1,
with threshold kept fixed, α = 10−6.

the horizontal and vertical axes of the figure, respectively. The
vertical color code bar on the right of the figure gives the values
of ‖AF − FΛ‖F . For the brown-red blocks on the upper left
corner of the image (.01 ≤ β ≤ .32 and α ≤ 5× 10−4), SGFA,
algorithm 1, only ran for a single iteration, since after the first
iteration the stopping condition σmin(F1) < α is already met;
hence, the best estimate of the Fourier Basis is the starting F0

obtained by performing the complex Schur decomposition of A
in (16). For any value of the contracting factor β, when the
threshold α decreases, the accuracy of the approximation im-
proves as can be observed from the gradient of the colors in each
row of Fig. 4. This is expected since, if the thresholdα decreases,
our stability criterion is relaxed and SGFA, algorithm 1, runs
for more iterations. SGFA may stop before noticeable reduction
of the objective. For example, for β = .01 and α ≥ .001 the
algorithm stops with the approximation error still significant, see
top left corner of the figure that gives ‖FA− ΛF‖F ≥ 100. To
decrease the error objective to for example ‖FA− ΛF‖F ≤ 20,
we can increase β ≥ .43 with α ≥ .01. To reduce even more
significantly the objective ‖FA− ΛF‖F ≤ 10, we can keep
β ≥ .43 but reduce α ≈ 10−5 − 10−6.

Theorem 2 proves that there is an exponential dependency
between accuracy and the number of iterations of SGFA, al-
gorithm 1. We consider this in Fig. 5 that plots in log scale
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Fig. 6. Political blogs network—Histogram of component wise errors: Other
measure of the accuracy of SGFA, algorithm 1, with (α, β) = (10−6, 0.74).
The tail of the histogram was removed for visualization purposes. From the
14902 data points, only 0.006% had an error larger then 10−6, with maximum
error 5.03× 10−6.

‖AF − FΛ‖F versus the number of iterations for the indicated
values of the contracting factor β, while maintaining fixed the
threshold at α = 10−6. Note the linear decay tendency of the
several plots in Fig. 5. It is interesting to note that for α ≤ 10−5

the approximation error tends to be less sensitive to moderate
values of β ≤ 0.85, as seen from the corresponding plots of
Fig. 5 (the four left lines close to the vertical axis) that all termi-
nate at a similar endpoint ‖AF − FΛ‖F ≈ 0.4. This can also
be concluded by observing that there are no visible significant
color differences on the right of Fig. 4.

While Fig. 5 gives the sum of the errors over all 14902 ≈
2.25× 106 entries, we consider now the accuracy over each
normalized component of the eigenvector error given by∣∣∣∣ (Afi − λifi)j

n

∣∣∣∣ , (i, j) ∈ {1, . . . , n}2. (30)

Fig. 6 plots the histogram of the error (30) after computing F
with SGFA, algorithm 1, with (α, β) = (10−6, 0.74). As can be
seen, the component wise error given by (30) and shown on the
horizontal axis of the figure is on the order of 10−6 and, in fact,
75% of all (Afi − λifi)j have an absolute value lower than 10−7

(bars on the left of the figure).
2) Stability: Figs. 7 and 8 plot measures of numerical sta-

bility for the approximated Fourier Basis F—the minimum
singular value σmin(F ), the condition number κ(F ), and the
inverse error εinv(F ). The condition number κ(.) in Fig. 8 is

κ(F ) =
‖F‖2

σmin(F )
. (31)

If the condition number κ(F ) is large the underlying matrix
is close to being singular, and, hence, (31) provides another
classical measure of numerical stability for F .

The inverse error εinv(F ) shown in Fig. 8(a) is defined by

εinv(F ) = max
{∥∥FF−1 − I

∥∥
F ,

∥∥F−1F − I
∥∥
F
}
. (32)

Fig. 7. Political blogs network: Stability of SGFA, algorithm 1, as a function
of number of iterations K with stopping criteria α = 10−6: σmin(F ).

Fig. 8. Political blogs network: Other measures of stability of F as a function
of the number of iterations K with the same stopping criteria α = 10−6: (a)
condition number κ(F ); (b) inverse error εinv(F ) that quantifies the error of
inverting matrix F .

It measures the quality of the numerically computed inverse
F−1. This is important in graph signal processing since, as it is
well known [8] and shown by (5), F−1 is the GFT.

Contrasting the five lines on the right with the four left lines
graphed in the three plots shown in Figs. 7 and 8, we see that the
three stability measures of F , σmin(F ), κ(F ), and εinv(F ) all
tend to converge at a much slower rate for β ≥ 0.85 than with
low-medium values ofβ, while still achieving, after a sufficiently
large number of iterations, the same overall numerical stability.
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In practice, this suggests that one should avoid a high value of β:
SGFA, algorithm 1, will take longer to achieve an equally stable
but less accurate Fourier basis (as shown in Fig. 5).

Although the stopping criteria of SGFA, algorithm 1, is com-
pletely defined by σmin(Fk) < α, we observe that in practice all
three stability measures tend to scale linearly with the number of
iterations K just as the accuracy measure ‖AF − FA‖F scales
linearly with K, see Fig. 4. This is more true with small values
of β. Further, from Fig. 8(a), we observe that the limiting values
of the minimum singular value and of the condition number ofF
tend to scale linearly withα or1/α, respectively, i.e.,σmin(F ) ≈
α ≈ 10−6 (Fig. 7 or κ(F ) ≈ 1/α ≈ 106 (Fig. 8(a))). This sug-
gests that, empirically, one can interpret the constant stopping
criteria α either in terms of σmin or the condition number κ, i.e.,
although SGFA, algorithm 1, was motivated by the convex upper
bound of σmin given in Equation (14), Fig. 8(a) suggests that the
termination criteria of algorithm 1 could compare κ against 1/α
instead of σmin against α.

As a final comment, by numerically computing the inverse
F−1 of the approximate matrix F obtained with SGFA, algo-
rithm 1, Fig. 8(b) shows that the inverse error εinv(F ) measuring
how far FF−1 is away from the identity I as given by (32) is
in the range [10−7, 10−8] for a tolerance of α = 10−6. Since
the total number of entries of F is n2 = 1, 4902 ≈ 2.2× 106

this means that the error in any individual entry of FF−1 is, on
average, on the order of 10−13 to 10−14.

3) Approximating Left vs Right Eigenvectors—Political
Blogs Network: All previous sections considered the problem of
computing accurate and stable approximation of right eigenvec-
torsF for an arbitrary graph shiftA. Note, however, that the same
exact reasoning applies for (the conjugate transposed of the)
left eigenvectors WH = F−1, as defined in Equation (4), since
the left eigenvectors of A correspond to the right eigenvectors
of AH , i.e.,

AF = FΛ ⇔ FHAH = Λ∗FH ⇔ AHW = WΛ∗. (33)

So, one could, equivalently, apply SGFA, algorithm 1, with
input A to obtain F and then invert it to compute F−1, or
apply SGFA, algorithm 1, directly to AH and obtain W and
then invert WH to get F , and choose the better approximation,
in terms of accuracy and stability. If SGFA, algorithm 1, finds the
global solution of (13), Equation (33) implies that we will exactly
have F−1 = WH , computed either way, given that the matrices
are stable enough for numerical invertibility, i.e., parameter α
in SGFA, algorithm 1, is sufficiently high. Fig. 9 plots accuracy
and discrepancy results between F and W , considering SGFA,
algorithm 1, with input A, AH = AT and Λ = Λ∗ (A is real).
The subscript FA (WAT ) indicates that the right (left) eigenvec-
tors of A (AT ) were computed with SGFA, algorithm 1, with
input A/AT , respectively. Each point of Fig. 9 corresponds to a
run of SGFA, algorithm 1, forA (blue curve) andAT (red curve),
for a specific stability parameter α ∈ {10−1, 10−2, . . . , 10−6}
(α increases from left to right). For very small α, both ap-
proximations, FA and WAT are accurate (low objective of
problem (13) corresponds to points on the left of the horizontal
axis) but the discrepancy betweenFA andWAT is higher (higher
values on the vertical scale). Increasing α (moving from left to
right), discrepancy decreases (lower values on the vertical axis),

Fig. 9. Political blogs network: Approximating left and right eigenvectors,
FA and WAT (respectively), using SGFA, algorithm 1, with β = 0.43 and
considering different α levels.

but the accuracy worsens (moving to the right on the horizontal
axis). For a value ofα = 10−3, we find a good trade-off between
these two factors: accurate approximation (error ≈ 9.5) and
small discrepancy (error ≈ 0.37n).

VI. MANHATTAN ROAD NETWORK

We now carry out a similar study by applying SGFA, algo-
rithm 1, to the Manhattan road map.

A. Dataset

We start by briefly describing the Manhattan road network of
Fig. 2(c). This Network consists of 5464 nodes that represent
latitude and longitude coordinates [4], connected by 11,568
directed or undirected edges that represent one or two way
streets as verified by Google Maps [3]. The underlying graph
G = (V, A) is directed and unweighted: Ai,j = 1 if and only
if there is a directed edge from node i to node j. Otherwise
Ai,j = 0. As it is natural (no dead-end streets in a city), graph G
is strongly connected (there exists, at least, one path from each
node to any other node). Matrix A has an eigenvalue λ = 0
with high multiplicity as seen in Fig. 12(a). Computing F with
MATLAB eig, we find that σmin(F ) ≈ 6.2× 10−19.

B. Approximating a Stable Fourier Basis

Taking into account the numerical study of Section V-B,
we applied SGFA, algorithm 1, and choose a (fixed) stopping
criterion α = 10−6 and a grid of six values for the contraction
factor .2 ≤ β ≤ .9. We did not consider values β > .9 since as
observed before this takes SGFA, algorithm 1, longer to converge
with no noticeable performance improvement.

1) Accuracy: Fig. 10 displays the accuracy ‖AF − FΛ‖F
(log scale) versus number of iterations (linear scale). It shows
that accuracy increases exponentially with β (theorem 2); again,
there is no reason to consider a high value for the contraction
factorβ since, forβ ≥ 0.7, SGFA, algorithm 1, will run for more
iterations while achieving a worst overall approximation.

2) Stability: Figs. 11(a), 11(b), and 11(c) plot the stability
measures of Section V, now for the Manhattan road network. We
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Fig. 10. Manhattan road network: Accuracy of SGFA, algorithm 1.

Fig. 11. Manhattan road network: Stability of SGFA, algorithm 1.

Fig. 12. Manhattan road network: Angle (34) stability measure. In (a) the
spectrum ofA and in (b) the histogram of the anglesθ(Afi,λifi). Blue indicates
that θ(Afi,λifi) < 10◦ and red represents the complement θ(Afi,λifi) ≥
10◦.

observe a phase transition behavior with β where the stability
measures converge at a much slower rate for β > 0.7. Again,
we verify that the condition number κ(F ) tends to scale linearly
with 1/α, i.e., κ(F ) ≈ 106 as seen in Fig. 11(b). As observed
with the political blogs network, the same conclusion applies
here: one should avoid very high values of β since there is no
significant payoff in terms of numerical stability.

The accuracy measure ‖AF − FΛ‖F studies how close the
magnitude of Afi is to λifi. But both the magnitude and orien-
tation of fi are important for achieving an accurate and stable
approximated Fourier Basis F . To further test how close the
columns fi of F are to being eigenvectors,17 we compute the
angle θ(Afi, λifi) between the two vectors Afi and λifi. If the
angle is small, the two vectors are aligned as they should be. This
represents yet another important stability measure for SGFA,
algorithm 1. Generally,Afi and λifi are complex vectors, hence
we compute θ(·, ·) by relying on the real vector space R2n that
is isometric to Cn [51]

∀x, y ∈ Cn \ {0} : θ(x, y) = arccos

(
Re(xHy)

‖x‖2 ‖y‖2

)
. (34)

Fig. 12(a) shows a scatter plot of the eigenvalues (spectrum)
of A. A majority of the eigenvalues form a (blue) cloud away
from the origin, while the remaining form a dense (red) cluster
very close to the origin. Fig. 12(b) is the histogram of the

17Note that we do not normalize fi to norm 1 because normalizing fi will
affect the numerical stability of F , as shown in Section III for F (ε). This was
precisely the problem with Theorem 1 that motivated formulation (13).
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Fig. 13. Manhattan road network: Approximating left and right eigenvectors,
FA and WAT (respectively), using SGFA, algorithm 1 with β = 0.43 and
considering different α levels.

Fig. 14. Accuracy of SGFA for directed Erdős-Rényi graphs with probability
of connection p. In (a) low values of p and in (b) high values of p. Mean for 100
Monte Carlo trials.

angles θ(Afi, λifi) between Afi and λifi computed by (34).
The histogram has three main bars, a large (blue) bar on the
left collecting about 80% of the angles θ(Afi, λifi) < 10◦, and
two small (red) bars on the right with the remaining 20% of
the angles θ(Afi, λifi) ≈ 90◦. The large (blue) bar close to the
origin corresponds to the 80% of the eigenvectors fi associated
with the eigenvalues away from zero (blue cloud) in Fig. 12(b),
demonstrating that the vectorsAfi andλifi are (almost) colinear
as they should be. The two small (red) bars on the right of the
histogram close to 90◦ correspond to the 20% of the eigenvectors
λifi associated with the eigenvalues close to zero (dense red
cluster) in Fig. 12(b), apparently showing that the vectors Afi
and λifi are practically orthogonal. This is simply an artifact

Fig. 15. Stability of SGFA for directed Erdős-Rényi graphs with p = 0.0184.
Mean for 100 Monte Carlo trials.

Fig. 16. Manhattan road map: total variation (35) of the Fourier basis F
computed in Section VI-B with β = 0.5.
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Fig. 17. Manhattan road map: Heat Map of the log scale magnitude of several Fourier basis vectors fi. Index i is ordered according to the total variation in
Fig. 16—figures (a)–(f) correspond to the graph frequency components marked by the black dots (from left to right) in Fig. 16.

of how the angle is computed through (34). Because for these
eigenvectors fi the associated eigenvalues λi ≈ 0, then λifi is
approximately the zero vector, and once a vector is the zero
vector the inner product computed in (34) is also zero leading
to interpreting the angles as ≈ 90◦.

3) Approximating Left vs Right Eigenvectors—Manhattan
Road Network: Fig. 13 plots the discrepancy versus accuracy
now for the Manhattan road network graph shift. For α =
10−1, 10−2, 10−3, SGFA, algorithm 1, ran for a single iteration
with bothA andAT (this explains why there are only four points
in the figure). Our conclusions replicate those for Fig. 9 for
the political blogs network: increasing α decreases accuracy
but improves discrepancy. For α = 10−4, SGFA, algorithm 1,
achieves mean accuracy and mean discrepancy of, respectively,

‖AF − FΛ‖F +
∥∥ATW −WΛ

∥∥
F

2
≈ 24∥∥∥FA − (

WH
AT

)−1
∥∥∥
F
+
∥∥∥WAT − (

FH
A

)−1
∥∥∥
F

2
≈ 0.19n.

VII. DIRECTED ERDŐS-RÉNYI GRAPHS

We consider synthetic random graphs; these allow graph
properties to be better controlled and to investigate the impact
of varying its properties. In concrete, we consider directed
Erdős-Rényi graphs (with possible self loops) of fixed dimension
n = 100 and varying probability of connection p. As seen in
Fig. 1 (blue curve), these random models will have an unstable
Fourier basis F for small and large values of p, i.e., for either
very sparse or very dense graph shifts A.

1) Accuracy: Fig. 14 plots the average accuracy of algo-
rithm 1 for directed Erdős-Rényi graphs with varying prob-
ability of connection p. The color legend of Fig. 14(b) also
applies to 14(a). For each value of p, the best accuracy re-
sults are achieved by considering the smallest values of β, i.e.,
β ∈ {0.1, 0.189, 0.278}. This behavior is consistent with that
observed in both previous sections where a high value of β was
discouraged.

For sparse models, Fig. 14(a) shows that accuracy tends to
increase with p regardless of the value of β. Say for β = 0.189,
the average approximation error ‖AF − FΛ‖F is improved by a
factor of 37 by moving from p = 0.0095 to p = 0.0229. Similar
observations can be taken for dense directed random graphs,
see Fig. 14(b). Like for sparse graphs, the average behavior of
dense models depends on the value of β and improves, now
as p is reduced. To be concrete, for β = 0.189, the average
approximation error ‖AF − FΛ‖F is improved by a factor of 4
by moving from p = 0.9926 to p = 0.9855. For β > 0.722, the
mean accuracy plots of Fig. 14(b) are approximately constant.

2) Stability: Fig. 15 plots stability measures for an average
iteration of algorithm 1 for probability of connection p = 0.229
(right most point in Fig. 14(a)). The number of iterations of
SGFA is not fixed, since it depends on the input matrix A and
contraction factor β. Hence, we consider 100 directed Erdős-
Rényi graphs and compute the median number of iterations
med(A, β) of algorithm 1. Since the sample size is 100 there
exists 50 epochs for which the algorithm ran for more than
med(A, β) iterations. Fig. 15 plots the average among these 50
epochs for the first med(A, β) iterations, i.e., for each random
graph A and factor β, we average 50 time series of dimension
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med(A, β). We observe that, on average, all three stability
measures scale linearly with the number of iterations K, and
this exponential behavior tends to be smoother and faster for
low values of β, say β ≤ 0.9 for Fig. 15(b) and 15(c). Again,
Fig. 15(b) suggests that the termination criteria of algorithm 1
could compareκ(Fk) against1/α instead ofσmin(Fk) againstα,
with Fk the approximated Fourier basis at iteration k.

VIII. FREQUENCY ORDERING

We now illustrate the usefulness of SGFA by analyzing and
ordering the graph frequencies and graph spectral components of
a (large) real world network, namely, the Manhattan road map in
Fig. 2(c). Graph Signal Processing orders the graph frequencies
from low to high through the (increasing) total variation TV
[27], [28] of the corresponding graph spectral components. The
TV of the graph spectral component f is [27], [28]:

TV(f) = ‖f −Anormf‖1 , Anorm =
A

|λmax| , (35)

where λmax denotes the eigenvalue of A with largest magni-
tude. Fig. 16 plots the total variation of the columns of the
Fourier basis F reordered by their TV. Fig. 16 labels regions
as low, medium, and high frequencies where the boundaries
are simply indicative. Fig. 17 plots the magnitude of several
Fourier basis vectors (columns of F ) in the two dimensional
plane corresponding to the Manhattan road map. Fig. 17(a)–
(f) are displayed in order of increasing variation as computed
by (35), i.e., corresponding from low to high graph frequencies
(dots from left to right in Fig. 16). The three graph spectral
components fi, i = 1, 200, 1700, shown in Fig. 17(a)–(c), tend
to be sparse vectors with slowly varying magnitude. In contrast,
the three spectral graph components fi, i = 3050, 4900, 5646,
displayed in Fig. 17(d)–(f), are much less smooth and exhibit
(visually) much pronounced variation.

IX. CONCLUSION

This paper addresses an open problem in Graph Signal Pro-
cessing, namely, it presents SGFA, an approach to compute
the graph spectral components for graph signals supported by
generic (directed) sparse graphs. With generic graphs, the cor-
responding graph shift A may have complex graph frequen-
cies (eigenvalues), non orthogonal graph spectral components
(eigenvectors), and, as commonly observed in practical real
world applications, possibly repeated eigenvalues. Having an
efficient procedure to approximately diagonalize these shifts A
enables pursuing the graph spectral analysis of graph signals.
We formulated the problem of computing accurate stable ap-
proximations of the Fourier basisF (matrix of the graph spectral
components) of a generic directed graph shift A as a constrained
optimization—optimize accuracy, as evaluated by the degree of
invariance of the columns of F , while maintaining numerical
stability, as measured by the minimum singular value of F (and
corresponding condition number, since the largest singular value
of F is empirically verified not to be very large). This opti-
mization is non-convex, so, we propose an efficient algorithm—
SGFA—that decreases, at least exponentially, the value of the

objective per each iteration. SGFA attempts to diagonalize a
triangular decomposition ofA, while guaranteeing the numerical
stability of the resulting local solution through a threshold α
that controls the minimum singular value of our approximation.
We applied SGFA to two real-world graphs, namely, the 2004
U.S. Presidential Election blogs network [2] and the Manhattan
road map [3], and also to directed Erdős-Rényi graphs with
either very small or very large probability of connection. The
paper shows that SGFA generates efficiently good accurate ap-
proximations of F , while insuring its stability, as demonstrated
experimentally with respect to several metrics of accuracy and
stability (not just the optimized ones). Finally, we illustrate the
application of SGFA by computing, ordering, and displaying the
graph frequencies (eigenvalues) and graph spectral components
(eigenvectors) for the Manhattan road map. Future work includes
further analysis of structured random models that may better
approximate real world graphs, for example, further analysis of
Erdős-Rényi graphs with community structure.
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